M.SC. FOURTH SEMESTER EXAMINATIONS, 2021

Subject: Mathematics	Course ID: 42154
Course Code: Math-404ME	Course Title: Computational Fluid Dynamics
Full Marks: 40	Time: 2 Hours

The figures in the right hand side margin indicate full marks.

Notations and symbols have their usual meaning

Answer any five from the following questions.

- (a) Define various types of boundary conditions that are encountered in Computational Fluid Dynamics (CFD).
 - (b) Define explicit and implicit schemes and give the example of these schemes. 4+4=8
- 2. (a) Prove that the function $u \in L^{\infty}_{loc}(\mathbb{R}_+ \times \mathbb{R})$ is a weak-solution of $u_t + f(u)_x = 0$ with $u(x, 0) = u_0(x) \forall x \in \mathbb{R}$ if the equation

$$\iint_{\mathbb{RR}_{+}} (u\varphi_{t} + f(u).\varphi_{x}) dt dx + \int_{\mathbb{R}} u_{0}(x)\varphi(x,0) dx = 0 \text{ is fulfilled for all test functions}$$
$$\varphi \in C_{0}^{1}(\mathbb{R}_{+} \times \mathbb{R}).$$

- (b) Define the Rankine-Hugoniot condition for a discontinuous solution.
- (c) Define the entropy condition related to a discontinuous solution of the Cauchy problem.
- (d) Give an example of a Cauchy problem for scalar conservation law. 3+2+2+1=8
- 3. Derive Lax-Wendroff finite difference scheme for solving first order wave equation $u_t + cu_x = 0$, c > 0 and hence discuss its stability analysis. 4+4=8
- 4. Use the FTCS Method to calculate a numerical solution of the equation $u_t = u_{xx}$, 0 < x < 1,

t > 0, where (1) u = 0, x = 0 and 1, $t \ge 0$, (*ii*) u = 2x, $0 \le x \le \frac{1}{2}$, t = 0, (*iii*) u = 0

2(1 - x),
$$\frac{1}{2} \le x \le 1$$
, $t = 0$ (Take $\Delta x = \frac{1}{10}$, $\Delta y = \frac{1}{100}$). 8

- Give an elaborate account of solving Navier-Stokes equations for incompressible two-dimension flows in cartesian coordinates using the MAC method.
- 6. (a) What is alternating direction implicit (ADI) technique? Explain.

8×5=40

(b) Write down explicit upwind differencing scheme and implicit upwind differencing scheme for the Linear Advection Equation $u_t + au_x$ =0, a > 0. 4+4=8

7. Solve the following two-dimensional elliptic model mixed BVP;

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0; \ 0 \le x \le 1, 0 \le y \le 1,$$

subject to the conditions:

$$u(x, 0) = 2x, u(x, 1) = 2x - 1; 0 \le x \le 1,$$

$$u(0, y) + \frac{\partial u}{\partial x}(0, y) = 2 - y, u(1, y) = 2 - y; 0 \le y \le 1.$$

Use the five-point formula with $h = \frac{1}{3}$ and $k = \frac{1}{3}$.
5+3=8

- 8. (a) What is Computational Fluid Dynamics?
 - (b) Why do we need computational methods for fluid dynamics problems?
 - (c) Define incompressible flow and irrotational flow.
 - (d) Give two examples of real-life problems involving incompressible flow. 2+2+2+2=8
